Small-scale Properties of Atomic Gas in Extended HI Envelopes of Galaxies

What can HI tell us about star

Sanchayeeta (Sanch) Borthakur Johns Hopkins University UC Berkeley

Gas gas everywhere, nary a star being formed

Small-scale Properties of Atomic Gas in Extended H1 Envelopes of Galaxies

Sanchayeeta (Sanch) Borthakur Johns Hopkins University UC Berkeley

Wow! A bright Quasar behind the disk!

Borthakur et al. 2011, ApJ, 727, 52

Cold Gas in the HI Envelope

VLA D-configuration

Physical Properties of HI

Suppression of Condensation

- 90% of the HI fail to condense to cooler phase (< few 100 K)
 <p>Low Metallicity: Lower radiative cooling (Wolfire et al. 1995)

 So thermal equilibrium between warm and cold HI requires higher pressure
- 2. The cold phase (10% of HI) is unusually cold: \leq 25K
 - Gas in the Milky Way at ≤ 25 K is in the molecular phase.
 - Fraction of HI that was able to condense into the cold phase remains in the atomic state and avoids the transition to molecular phase.

Low Dust Content: Low photoelectric heating by dust grains. Impede molecule production

- 3. Similar narrow HI features seen in SMC (Dicket et al. 2000))
 - The dust optical depth of the HI shielding layer (Krumholz et al. 2009)
 - HI column densities required to detect molecules in

Milky Way \rightarrow N(HI) \geq 5 x 10²⁰ cm⁻²

- LMC \rightarrow N(HI) \geq 20 x 10²⁰ cm⁻²
- SMC \rightarrow N(HI) \geq 100 x 10²⁰ cm⁻²

Suppression of Condensation

- The dust optical depth of the HI shielding layer (Krumholz et al. 2009)

- HI column densities required to detect molecules in

Milky Way \rightarrow N(HI) \geq 5 x 10²⁰ cm⁻²

- LMC \rightarrow N(HI) \geq 20 x 10²⁰ cm⁻²
- SMC \rightarrow N(HI) \geq 100 x 10²⁰ cm⁻²

Solution: Metal Mixing?

(Hot mode, code mode, etc.)

(Turbulence, stellar feedback, recycled accretion, gravitational stress, etc.)

Low covering fraction of cold gas

Cold Gas in the Stellar Disk of Galaxies

Borthakur et al. 2010, ApJ, 713, 131

Gaussian of FWHM = 3.6 km/s Kinetic Temperature ≤ 283 K

Spatial Extent of the Absorber: Parsec-scale structures

Contours are 3, 4, 5, and 6 times the rms noise of 1.5 mJy beam⁻¹. Greyscale show the radio continuum.

Small-scale Properties of HI in Galaxies

(J2000)

Declination

Small covering fraction of cold gas in the ISM - $f_{cov} \approx 25\%$

Simple kinematics in cold gas clouds

Atomic gas at extremely low temperatures – FWHM= $1.1 \text{ km/s} \Rightarrow T_{\text{kinetic}} \le 26 \text{ K}$

Low column density of cold gas

Most of the neutral gas in the ISM is in the warm phase - $M(HI)_{cold}/M(HI)_{total} \sim 10\%$

Indication of suppression of condensation

With SKA and its precursors, similar experiments can be performed for a much larger sample to explore correlations between condensation of HI and galaxy properties.

We NEED High Spatial and Spectral Resolution

mJy/Beam