A GBT Survey of the HALOGAS Galaxies: Revealing the full extent of HI around spirals and searching for signatures of cold mode accretion

Nickolas Pingel

West Virginia University

with D.J. Pisano (WVU) and George Heald (ASTRON)

Netherlands Institute for Radio Astronomy

Cold*/Hot Mode Accretion

- Numerous simulations predict gas is accreted on to galaxies in a two dominant processes (Birnboim & Dekel 2003; Keres et al. 2005, 2009)
- Filamentary cold mode is most dominant at z<1; at z=0 the quasi-spherical hot mode becomes dominant for galaxies with high mass halos and in high density environments
- Cold mode is still dominant through z=0, though should only be evident in galaxies with M_{halo} $\leq 10^{11.4} M_{\odot}$ and $n_{gal} \leq 1 h^{-3} Mpc^{-3}$ (Kereš et al. 2005).

Ovcirk, Pichon & Teyssier (2008)

Observational Signatures

- Observational evidence is extremely limited!
 - Ribaudo et al. 2011 argue a detection in absorption from obs of Lyman-Limit Systems.
 - require serendipitous quasars or other strong background sources.
 - No info on extended spatial distribution.
 - Braun & Thilker (2004) discovered low density HI filament connecting M31 & M33. Wolfe et al. 2013 found this filament to be made of clumpy HI.
 - Bekki (2008) and Putman et al. (2009) propose this filament is of tidal origin.
 - Pisano (2014) and de Blok et al. (2014) discovered large HI structures in NGC6946 and NGC2403, which are either related to accretion or tidal features.
- Detection in emission is extremely difficult due to high ionization fraction at log(N_{HI}) ≤ 19.0 cm⁻².
 - Simulations by Joung et al. (2012) show gas can cool enough to form HI clouds within the inner-most regions of the halo (R <100 kpc)
 - should be detectable at Log(N_{HI})~18 cm⁻²

HALOGAS Sample

- Representative sample of spiral galaxies
 - 24 total Barred and unbarred spirals with Hubble types between Sa and Sd
 - Systemic velocities > 100 km/s to avoid MW HI signal
 - Inclination ranges from 50 to 90 deg
 - Sample spans wide range of SFRs, warps/ lopsidedness, HI Mass, Stellar Mass, M_{dyn}, environment etc...
- Study of the extraplanar gas kinematics will constrain key parameters predicted by halo gas and accretion models
- Perfect sample to use as the first statistical study relating galaxy properties and HI environment at and N_{HI}~10¹⁸ cm^{-2.}

HALOGAS Sample (Heald et al. 2011)

HALOGAS Sample (Heald et al. 2011)

Summary of GBT Observations

- Minimum of 10 hours per source.
- Mapped in basketweave fashion over 4 deg² area
- Data taken frequency switched for calibration, though reduced differently.
- Used map edges as 'off' position near the edge.

Why supplement high-res data with single dish observations?

Superior surface brightness sensitivity

- Typical rms noise per 5.2 km/s velocity channel of 15 mK.
- Corresponds to 3σ column density over a 20 km/s line of 1.7x10¹⁸ cm⁻²
 - GBT is <u>a full order of magnitude</u> more sensitive than VLA (THINGS) and WSRT (HALOGAS)
 - Diffuse, extended HI component tracing theorized 'cold' flows <u>should</u> be detectable.

Sensitive at ALL angular scales

- Missing baselines in the inner most region of the (u,v) sample plane make extended structures invisible to interferometers.
- We plan to combine GBT+WSRT data in order to address this short spacing issue.

Goals for a *complete* HI census

- Build up large number statistics pertaining to galaxy properties.
 - e.g. dynamical mass, total HI mass, halo mass, SFRs, etc...
- Must have single dish observations for info at ALL angular scales
- Look for signatures of cold mode accretion
- Attempt to discern cold mode accretion from tidal interactions. May be possible by studying turbulence in extraplanar gas

Convolved WSRT Maps

- For convolving the WSRT data to GBT resolution, conventional analysis assumes a Gaussian beam. This does not take "stray" radiation coming into the near sidelobes.
- We construct a model GBT beam map using a theoretical calculation of the GBT beam from Srikanth (1993).

<u>KEY:</u>

GBT data: thick 7e17 cm⁻² (5 σ) & thin contours WSRT data: thin (1e19 cm⁻² & thick (set at 7e17 cm⁻²; same 5 σ level as GBT!) red contours

- The thick black contour in GBT map is generally more extended than its WSRT counterpart.

-We detect more flux overall in the GBT maps out to larger extents.

Channel Maps of NGC925

- We again see the GBT is detecting low column density HI out to larger extents.

Channel Maps of NGC891

What can the residual maps show us?

What can the residual maps show us?

NGC925

Right Ascension (J2000)

Results

- 2σ and 3σ detections in the residual maps trace excess emission seen in channel maps of NGC891.
- Areal analysis of low N_{HI} pixels show GBT/ WSRT area to be > 1 for all sources.
- To confirm this excess emission and study the spatial extent, we need an actual beam map of the GBT beam.

Focal L-band Array for the GBT (FLAG)

- Backend for cryogenic phased array feed (PAF)
- Tsys/η~50 K at ~1500 MHz. This will improve when dipole elements are upgraded and optimally spaced.
- Increase survey speeds by a factor of 3-5 by forming multiple beams on the sky.
- Currently, WVU is working alongside NRAO and BYU to have the PAF and backend to be ready in 2016.

Tsys/eff vs freq for bore sight beam

