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Cold*/Hot Mode Accretion

« Numerous simulations predict

gas is accreted on to galaxies in

a two dominant processes ) ~ R I

(Bimboim & Dekel 2003; Keres = 5" I’

et al. 2005, 2009) m \& “J ¢ .
- Filamentary cold mode is most ~ « . ¢ :.f; ’ 1 B

dominant at z<1; at z=0 the e o o e R

quasi-spherical hot mode osvmmaesos

becomes dominant for galaxies
with high mass halos and in high
density environments -

e Cold mode is still dominant 400

through z=0, though should only =~ ™= ¢ s ee™ e b0 Sate e
be evident in galaxies with M, .,
<1014 Mg and Ngal < 1 h-3Mpc-3 Ovcirk, Pichon & Teyssier (2008)

(Keres et al. 2005).



Observational Signatures

» Observational evidence is extremely limited!

= Ribaudo et al. 2011 argue a detection in absorption from obs of Lyman-
Limit Systems.
* require serendipitous quasars or other strong background sources.
* No info on extended spatial distribution.

= Braun & Thilker (2004) discovered low density HI filament connecting
M|31 & M33. Wolfe et al. 2013 found this filament to be made of clumpy

= Bekki (2008) and Putman et al. (2009) propose this filament is of tidal
origin.

= Pisano (2014) and de Blok et al. (2014) discovered large HI structures in
][\thC6946 and NGC2403, which are either related to accretion or tidal
eatures.

- Detection in emission is extremely difficult due to high ionization

fraction at log(N,,) < 19.0 cm™=.

- Simulations by Joung et al. (2012) show gas can cool enough to form
HI clouds within the inner-most regions of the halo (R <100 kpc)

» should be detectable at Log(N,,)~18 cm



T
HALOGAS Sample

- Representative sample of spiral galaxies

= 24 total Barred and unbarred spirals with Hubble types
between Sa and Sd

= Systemic velocities > 100 km/s to avoid MW HI signal
s |Inclination ranges from 50 to 90 deg

= Sample spans wide range of SFRs,warps/

lopsidedness, HI Mass, Stellar Mass, M
environment etc...

» Study of the extraplanar gas kinematics will
constrain key parameters predicted by halo gas
and accretion models

- Perfect sample to use as the first statistical study

relating galaxy properties and HI environment at
and N,,~ 1078 cm

dyn>’
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HALOGAS Sample (Heald et al. 2011)
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HALOGAS Sample (Heald et al. 2011)
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Summary of GBT Observations

e Minimum of 10 hours Novexs i
per source. e . A
- Mapped in basket- : - " g
weave fashion over4 3 1 g
deg? area w0
- Data taken frequency 0 5
switched for o | | s
calibration, though 2 . Q‘@, 8
reduced differently. & | | n
- Used map edges as e IO N

‘off’ pOSition near the RA (J2000) RA (J2000)
edge.



Why supplement high-res data with

single dish observations?

» Superior surface brightness sensitivity
= Typical rms noise per 5.2 km/s velocity channel of 15 mK.

= Corresponds to 3o column density over a 20 km/s line of
1.7x1018 cm

- GBT is a full order of magnitude more sensitive than VLA
(THINGS) and WSRT (HALOGAS)

- Diffuse, extended HI component tracing theorized ‘cold’ flows
Should be detectable.
» Sensitive at ALL angular scales

= Missing baselines in the inner most region of the (u,v)
sample plane make extended structures invisible to
interferometers.

= We plan to combine GBT+WSRT data in order to address
this short spacing issue.




Goals for a complete Hl census

 Build up large number statistics pertaining to
galaxy properties.

= e.g. dynamical mass, total HI mass, halo mass,
SFRs, etc...

» Must have single dish observations for info at
ALL angular scales
- Look for signatures of cold mode accretion

» Attempt to discern cold mode accretion from
tidal interactions. May be possible by studying
turbulence in extraplanar gas



IH
Convolved WSRT Maps

» For convolving the WSRT
data to GBT resolution,
conventional analysis
assumes a Gaussian beam.
This does not take “stray”
radiation coming into the near
sidelobes.

- We construct a model GBT
beam map using a theoretical |
calculation of the GBT beam
from Srikanth (1993).




KEY: Channel Maps of NGC925
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KEY:

GBT data: thick
4.8e17 cm=2 (50) &
thin contours
WSRT data: thin
(1e19 cm2 & thick
(4.8e17 cm™) red
contours

- We again see the
GBT is detecting low
column density HI
out to larger extents.
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What can the residual maps show us?

NGC891
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What can the residual maps show us?
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Results

N 2 n | n II’] 08— O NGC891 ' ' 2.0,
oa d_30 detections
the residual maps trace ., 2
excess emission seen

NGC925

- - WSRT

in channel maps of =" :
NGC891. ® o -
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. To confirm this excess  ul—=
emission and study the
spatial extent, we need : 7
an actual beam map of oo
the GBT beam.
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Focal L-band Array for the GBT (FLAG)

Backend for cryogenic { PP st beam (Xpe)
phased array feed (PAF) <>
Tsys/n~50 K at 1500
MHz. This will improve
when dipole elements are
upgraded and optimally
spaced.

0 10 2 30

Increase survey speeds by - : Cross Elevtion (arcin)
a factor of 3-5 by forming Tsys/eff vs freq for bore sight beam
multiple beams on the sky. P gt .
Currently, WVU is working < 80| .
alongside NRAO and BYU 37

to have the PAF and = \ -
backend to be ready in ul Fome o
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Frequency (MHz)



