

International Centre for Radio Astronomy Research

The Arecibo Ultra Deep Survey (AUDS)

Bi-Qing For (On behalf of the AUDS team)

ICRAR/University of Western Australia

THE UNIVERSITY OF WESTERN AUSTRALIA

Survey Team Members

Laura Hoppmann

Lister Stevaley-Smith

Bi-Qing For

Martin Zwaan

Wolfram Freudling

Mark Calabretta

Science Goals

Galaxy formation and evolution

- Star formation rate measured (increases by an order of magnitude) over redshift interval 0 < z < 2.5
- Significant uncertainties in co-evolution with HI and H₂ over same redshift range
- HI observations at cosmological distances (z > 0.1) are scarce
- Evolution already very important at other wavelengths over this look-back time (1.3 Gyr)

Motivation

Previous large blind HI surveys

Survey	Reference	Telescope	$\#_{\mathrm{Det}}$	Area (deg^2)	Redshift
AHISS^{a}	Zwaan et al. (1997)	Arecibo	66	65	0 - 0.025
ADBS^{a}	Rosenberg & Schneider (2002)	Arecibo	265	430	0 - 0.027
HIPASS^{a}	Meyer et al. (2004)	Parkes	4315	21341	0 - 0.042
North. HIPASS ^{a}	Wong et al. (2006)	Parkes	1002	7997	0 - 0.042
40% ALFALFA ^a	Haynes et al. (2011)	Arecibo	10, 119	2799	0 - 0.06
$ALFALFA^b$	Giovanelli et al. (2005)	Arecibo	~ 25000	7000	0 - 0.06
$AGES^b$ WAPP	Auld et al. (2006)	Arecibo	~ 1300	105	0 - 0.06
Mock			~ 1300	95	0 - 0.16
$\operatorname{CHILES}^{b}$ precursor	Fernández et al. (2013)	VLA	33	0.3	0 - 0.193
ALFA ZOA^b shallow	Henning et al. (2010)	Arecibo	~ 500	1000	0 - 0.06
deep			~ 1500	280	0 - 0.16
$AUDS^a$ precursor	Freudling et al. (2011)	Arecibo	18	0.069	0.07 - 0.16

 a Observations completed and survey completely published.

 b Observations ongoing or data not completely published - survey results not finalised.

- Increase redshift limit for direct detections
- Long integration time, small field
- Unbiased survey

AUDS Precursor

"ALFA Ultra Deep Survey"

Telescope: 305m Arecibo

Integration time: 53 hr

"Drift-and-chase" mode

Detection: 18 21cm emission lines (z=0.07-0.15)

SDSS 235948.4+154243 was one of the sources used to select the target region. Its SDSS redshift is marked in the spectrum.

Freudling et al. (2011)

AUDS

Bandwidth:1222—1422 MHz (z=0 – 0.16)Coverage:0.7 sq.degree (65' x 44') x 2 fields

Field selection criteria:

- One field observable all year round during night time
- Overlap with SDSS and Arecibo Environment Survey (AGES)
- Avoid strong continuum sources in the field

Field 1: α =08:20:00 δ =22:12:00Field 2: α =17:00:00 δ =19:14:00

Total: 1100hr 40 hr integration time per pointing

"Drift-scan-mode" Rotated 15°-23°

AUDS observation log

Hoppmann et al. (2015) Red: field 1, blue: field 2. Purple: data used in this study (~50%)

CRAR

RFI flagging

Top: stacked data from one beam after bandpass removal and calibration Middle: 3σ mask created in the flagging process Bottom: end result

Completeness

Completeness as a function of integrated flux, rms noise and velocity width. Curves obtained using false injection of convolved Busy functions.

Reliability & Cosmic Variance

Reliability:

- Comparing overlap regions between high and low frequency bands, and by injecting synthetic objects:
 - ~4% false detection rate, 96% reliability (first pass catalog)

Cosmic Variance:

- One field: 43±5%
- Two fields: 29±4%
- SDSS: 7% (Driver & Robotham 2010)

Cosmic Variance corrected:

- One field: 16%
- Two fields: 11%

Methods:

- Σ 1/V_{max} (Schmidt, 1968)
- 2D stepwise maximum likelihood (SWML; Zwaan et al. 2003) independent of density variation

Comparison between the 2 methods. Red: $\Sigma 1/V_{max}$ (cosmic variance corrected) ; blue: SWML

Cosmic HI Density $\Omega_{\rm HI}$

Black: AUDS ; blue: HIPASS ; red: AUDS precursor ** No evolution in the cosmic HI density out to z=0.2

Cosmic HI Density $\Omega_{\rm HI}$

AUDS (direct detection) Mean redshift: z = 0.065 $\Omega_{\rm HI}$ = (2.13±0.08) x 10⁻⁴ h⁻¹

Future Work

- Complete reducing and analyzing the last 50% of AUDS data
 → sensitivity limit down to 50—60 µJy, detect more galaxies
 → low mass end at the high redshift range
- Improve RFI flagging
- Better handling of continuum sources

- Data were collected from 2008—2013, only 50% data are presented here
- Completeness decreases for smaller fluxes for all bin
- 96% reliability, cosmic variance has been corrected (11%)
- α= -1.42 ± 0.02, log(M*HI/MO)=9.68 ± 0.05 +2 log h, Φ* = 6.85 ± 1.6 x 103 h3Mpc-3
- No evolution in the cosmic HI density out to z=0.2

Stay tuned! More to come!